WiSe22 AK NFDI: Unterschied zwischen den Versionen

Aus ZaPFWiki
 
(4 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 9: Zeile 9:
In diesem AK wollen wir diskutieren, wo unsere Prioritäten liegen und welche Themen evtl. aus anderen Arbeitssträngen wie Srefofum oder Corona-AKs wir mit einbringen wollen.
In diesem AK wollen wir diskutieren, wo unsere Prioritäten liegen und welche Themen evtl. aus anderen Arbeitssträngen wie Srefofum oder Corona-AKs wir mit einbringen wollen.


= Arbeitskreis: AK {{{Vorlage}}} =
= Arbeitskreis: Datenkompetenzen in der Hochschullehre =
'''Protokoll''' vom tt.mm.jjjj
'''Protokoll''' vom 12.11.2022
; Beginn
; Beginn
: HH:MM Uhr
: 08:40 Uhr
; Ende
; Ende
: HH:MM Uhr  
: 10:00 Uhr
; Redeleitung
; Redeleitung
: Vorname Nachname (Uni)
: Janice Bode (Münster), Philipp Jäger(Alumni)
; Protokoll
; Protokoll
: Vorname Nachname (Uni)
: Christian Stoß (Mainz),
; Anwesende Fachschaften
; Anwesende Fachschaften
 
:Universidad de los Saccos Veteres,
<!--:RWTH Aachen,-->
<!--:Albert-Ludwigs-Universität Freiburg,-->
<!--:Universität Augsburg,-->
<!--:Brandenburgische Technische Universität Cottbus,-->
<!--:Universität Bayreuth,-->
<!--:Carl von Ossietzky Universität Oldenburg,-->
<!--:Christian-Albrechts-Universität zu Kiel,-->
<!--:Eberhard Karls Universität Tübingen,-->
<!--:Freie Universität Berlin,-->
<!--:Freie Universität Berlin,-->
<!--:Friedrich-Alexander-Universität Erlangen-Nürnberg,-->
:Friedrich-Schiller-Universität Jena,
:Georg-August-Universität Göttingen,
<!--:Heinrich Heine Universität Düsseldorf,-->
<!--:Humboldt-Universität zu Berlin,-->
<!--:Humboldt-Universität zu Berlin,-->
<!--:Technische Universität Berlin,-->
<!--:Johann Wolfgang Goethe Universität Frankfurt am Main,-->
<!--:Universität Bielefeld,-->
:Johannes Gutenberg Universität Mainz,
<!--:Julius-Maximilians-Universität Würzburg,-->
<!--:Justus-Liebig-Universität Gießen,-->
<!--:Karlsruher Institut für Technologie,-->
<!--:Ludwig-Maximilians-Universität München,-->
<!--:Martin-Luther-Universität Halle-Wittenberg,-->
<!--:PH Ludwigsburg,-->
<!--:Philipps-Universität Marburg,-->
:Rheinische Friedrich-Wilhelms-Universität Bonn,
<!--:Rheinisch-Westfälische Technische Hochschule Aachen,-->
<!--:Ruhr-Universität Bochum,-->
<!--:Ruhr-Universität Bochum,-->
<!--:Rheinische Friedrich-Wilhelms-Universität Bonn,-->
<!--:Technische Hochschule Lübeck,-->
<!--:Technische Universität Bergakademie Freiberg,-->
<!--:Technische Universität Berlin - Naturwissenschaften,-->
<!--:Technische Universität Berlin - Physik,-->
<!--:Technische Universität Braunschweig,-->
<!--:Technische Universität Braunschweig,-->
<!--:Universität Bremen,-->
<!--:Technische Universität Chemnitz,-->
<!--:Technische Universität Chemnitz,-->
<!--:Technische Universität Clausthal,-->
:Technische Universität Darmstadt,
<!--:Brandenburgische Technische Universität Cottbus,-->
<!--:Technische Universität Darmstadt,-->
<!--:Technische Universität Dortmund,-->
<!--:Technische Universität Dortmund,-->
<!--:Heinrich Heine Universität Düsseldorf,-->
<!--:Universität Duisburg-Essen; Standort Duisburg,-->
<!--:Universität Duisburg-Essen; Standort Essen,-->
<!--:Technische Universität Dresden,-->
<!--:Technische Universität Dresden,-->
<!--:Friedrich-Alexander-Universität Erlangen-Nürnberg,-->
<!--:Technische Universität Kaiserslautern,-->
<!--:Goethe-Universität Frankfurt a. Main,-->
<!--:Technische Universität München,-->
<!--:Technische Universität Bergakademie Freiberg,-->
<!--:Technische Universität Wien,-->
<!--:Albert-Ludwigs-Universität Freiburg,-->
<!--:Universität Augsburg,-->
<!--:Justus-Liebig-Universität Gießen,-->
<!--:Universität Bayreuth,-->
<!--:Georg-August-Universität Göttingen,-->
<!--:Universität Bielefeld,-->
<!--:Technische Universität Graz,-->
<!--:Universität Bremen,-->
<!--:Universität Greifswald,-->
<!--:Universität Duisburg-Essen - Duisburg,-->
<!--:Martin-Luther-Universität Halle-Wittenberg,-->
<!--:Universität Duisburg-Essen - Essen,-->
<!--:Universität Hamburg,-->
<!--:Universität Hamburg,-->
<!--:Universität Heidelberg,-->
<!--:Universität Heidelberg,-->
<!--:Technische Universität Ilmenau,-->
<!--:Universität Innsbruck,-->
<!--:Universität Innsbruck,-->
<!--:Friedrich-Schiller-Universität Jena,-->
:Universität Konstanz,
<!--:Technische Universität Kaiserslautern,-->
<!--:Universität Osnabrück,-->
<!--:Universität Kassel,-->
<!--:Universität Paderborn,-->
<!--:Karlsruher Institut für Technologie,-->
<!--:Christian-Albrechts-Universität zu Kiel,-->
<!--:Universität Koblenz Landau, Standort Koblenz,-->
<!--:Universität zu Köln,-->
<!--:Universität Konstanz,-->
<!--:Universität Leipzig,-->
<!--:Technische Hochschule Lübeck,-->
<!--:Universität zu Lübeck,-->
<!--:Johannes Gutenberg-Universität Mainz,-->
<!--:Philipps-Universität Marburg,-->
<!--:Ludwig-Maximilians-Universität München,-->
<!--:Technische Universität München,-->
<!--:Westfälische Wilhelms-Universität Münster,-->
<!--:Carl von Ossietzky Universität Oldenburg,-->
<!--:Universität Potsdam,-->
<!--:Universität Potsdam,-->
<!--:Universität Regensburg,-->
<!--:Universität Rostock,-->
<!--:Universität Rostock,-->
<!--:Universität des Saarlandes,-->
<!--:Universität Siegen,-->
<!--:Universität Siegen,-->
<!--:Universität Stuttgart-->
<!--:Universität Stuttgart,-->
<!--:Eberhard Karls Universität Tübingen,-->
<!--:Technische Universität Wien,-->
<!--:Universität Wien,-->
<!--:Universität Wien,-->
<!--:Fachhochschule Wildau,-->
<!--:Universität zu Köln,-->
<!--:Julius-Maximilians-Universität Würzburg,-->
<!--:Universität zu Lübeck,-->
<!--:Bergische Universität Wuppertal-->
:Westfälische Wilhelms-Universität Münster,
<!--:JDPG; Junge Deutsche physikalische Gesellschaft,-->
:jDPG - Junge deutsche physikalische Gesellschaft
<!--:Universitas Saccos Veteres,-->


== Protokoll ==
== Protokoll ==
Was sind Datenkompetenzen?<br>
Folien: [[Datei:WiSe22 Datenkompetenzen im (Physik-) Studium.pdf]]
Es gibt einen Einführungsvortrag zum Thema Daten und Datenkompetenzen sowie eine Zusammenfassung der Ergebnisse vorheriger NFDI (Nationale Forschungsdaten Infrastruktur) AKs.
Es wird auch nochmal über die Datenstruktur im Physikalischen Praktikum eingegangen. Außerdem werden Beispiele erläutert, wie man einfach im Praktikum das Aufnehmen und Beschriften (Metadaten) von Daten übt und austauscht, um weitere/bessere Auswertungen mit eigenen und Fremddaten durchführen zu können.
Es werden ein paar Leute gesucht, die die NFDI Mandatierung übernehmen könnten.
* Bonn: Frage bezüglich Datenkompetenzen in den einzelnen Unis, da Bonn sowas nicht wirklich hat
** Mainz: Nutzt zwar Daten, aber keine Einführung in Metadaten, GitLab, etc (Learning by Doing)
** Bonn und Mainz: fangen in späteren Semestern mit digitaler Auswertung an
** Münster: fängt direkt digital (mit Fortram) an
** Jena: keine Einführung in fürs Praktikum mögliche Programme
** Darmstadt: Praktika grundsätzlich erst Stift/Papier, später auf einmal mit Auswerteprogrammen
** Göttingen: wird auch kein Datenanalyse Tool beigebracht und wie eigene Daten aussehen sollten, im Master werden dann Daten von anderen verwendet
* Wäre sinnvoll, eine Einführung in Metadaten zu bekommen
* Wer macht Versuche mit ROOT?
** Bonn und Mainz unter Umständen (aber ohne Einführung)
* Planung von Experimenten im Grundpraktikum?
** Mainz: will weg von vorgefertigten Versuchen
** Darmstadt: Haben selbst die Möglichkeit, sich ein Versuch in Newtonscher Mechanik selbst zu planen
** Alumni: Idee : "Messe die Erdbeschleunigung mit 3 verschiedenen Methoden"
** Mainz: hat bei uns vollkommen gefehlt, wie mit Metadaten umgegangen wird
* Göttingen: Einführung in Datenanalyse-Tools - sollten schon auch die Programme sein, die man später auch verwenden sollte (nicht einfach irgendeins)
* Bonn: Share: Millikan Versuch läuft nicht immer gut, im Zweifel können Betreuer Daten von gut funktionierenden Durchführungen für die Auswertung austeilen, Sammelsorium an guten Datensätzen für bessere Auswertung
* Göttingen: Evaluate: Man muss die Qualität der Datensätze insbesondere anderer Leute einschätzen lernen
* Mainz: Austausch zwischen Gruppen fördern statt unterbinden, bisher zählt der Austausch/Vergleich der Daten im Praktikum als Betrugsversuch
* Jena: Sollte man lernen, wie man vernünftig einen Datensatz aufbaut
* Münster: Umgang mit Datensätzen anderer Leute ist schwerer zu bewerten, da häufig sauberes Durchführen des Versuches Teil der Bewertung ist


=== Konkrete Ziele ===
==== Data Literacy: ====
Welche Datenkompetenzen wollen wir im Studium vertreten haben?
* (Strukturierte) Nutzung von Datenanalyse-Tools
** Sinnvolle Einführung in entsprechende Programme
** gleiche Tools in Lehre und Nutzung
* Welche Metadaten sind relevant?
** bibliographische Daten
** Spezifikation des Experiments, Rahmenbedingungen (z.B. Temperatur, Luftdruck,...)
** Wass muss/sollte enthalten sein?
* Woran erkenne ich die Qualität eines Datensatzes


==== Praktikum ====
Was kann man im Praktikum zum Lernen von Datenkompetenzen umsetzen?
(Unterteilung nach Data Management Lifecycle)
* Plan: Ziel eines Experiments definieren, Durchführung Studis überlassen (offen lassen)
** z.B. Messung von Konstanten
* Collect: Metadaten mit aufnehmen, Nachstellen von Experimenten anhand nicht ausreichender Metadaten
* Evaluate: "Erkenntnisse" aus Versuchen weiterverwenden
* Share: Daten von anderen Gruppen wiederverwenden
* Reuse: Einschätzen der Qualität von Datensätzen
* Austausch zwischen Gruppen fördern statt verhindern


== Zusammenfassung/Ausblick ==
== Zusammenfassung/Ausblick ==
Es wurde den folgenden zwei Fragen nachgegangen:
* Welche Datenkompetenzen wollen wir im Studium vertreten haben?
* Was kann man im Praktikum zum Lernen von Datenkompetenzen umsetzen?
Zur nächsten ZaPF werden diese Punkte in einem Positionspapier umgesetzt.
[[Kategorie:AK-Protokolle]]
[[Kategorie:WiSe22]]




Zeile 109: Zeile 162:
[[Kategorie:AK-Protokolle]]
[[Kategorie:AK-Protokolle]]
[[Kategorie:WiSe22]]
[[Kategorie:WiSe22]]
[[Kategorie:{{{Thema}}}]]
[[Kategorie:Praktikum]]
[[Kategorie:NFDI]]

Aktuelle Version vom 10. Dezember 2022, 11:16 Uhr


Vorstellung des AKs

Verantwortliche*r: Janice (Münster), Philipp (Alumni)

Die ZaPF hat sich eine gute Position erarbeitet, um im Bereich der Digitalisierung viele von uns lange vertretene Forderungen umzusetzen, da der (nicht bindende, aber weitgehend akzeptierte) Leitfaden für Physikstudiengänge derzeit überarbeitet wird.

In diesem AK wollen wir diskutieren, wo unsere Prioritäten liegen und welche Themen evtl. aus anderen Arbeitssträngen wie Srefofum oder Corona-AKs wir mit einbringen wollen.

Arbeitskreis: Datenkompetenzen in der Hochschullehre

Protokoll vom 12.11.2022

Beginn
08:40 Uhr
Ende
10:00 Uhr
Redeleitung
Janice Bode (Münster), Philipp Jäger(Alumni)
Protokoll
Christian Stoß (Mainz),
Anwesende Fachschaften
Universidad de los Saccos Veteres,
Friedrich-Schiller-Universität Jena,
Georg-August-Universität Göttingen,
Johannes Gutenberg Universität Mainz,
Rheinische Friedrich-Wilhelms-Universität Bonn,
Technische Universität Darmstadt,
Universität Konstanz,
Westfälische Wilhelms-Universität Münster,
jDPG - Junge deutsche physikalische Gesellschaft

Protokoll

Was sind Datenkompetenzen?
Folien: Datei:WiSe22 Datenkompetenzen im (Physik-) Studium.pdf

Es gibt einen Einführungsvortrag zum Thema Daten und Datenkompetenzen sowie eine Zusammenfassung der Ergebnisse vorheriger NFDI (Nationale Forschungsdaten Infrastruktur) AKs. Es wird auch nochmal über die Datenstruktur im Physikalischen Praktikum eingegangen. Außerdem werden Beispiele erläutert, wie man einfach im Praktikum das Aufnehmen und Beschriften (Metadaten) von Daten übt und austauscht, um weitere/bessere Auswertungen mit eigenen und Fremddaten durchführen zu können. Es werden ein paar Leute gesucht, die die NFDI Mandatierung übernehmen könnten.

  • Bonn: Frage bezüglich Datenkompetenzen in den einzelnen Unis, da Bonn sowas nicht wirklich hat
    • Mainz: Nutzt zwar Daten, aber keine Einführung in Metadaten, GitLab, etc (Learning by Doing)
    • Bonn und Mainz: fangen in späteren Semestern mit digitaler Auswertung an
    • Münster: fängt direkt digital (mit Fortram) an
    • Jena: keine Einführung in fürs Praktikum mögliche Programme
    • Darmstadt: Praktika grundsätzlich erst Stift/Papier, später auf einmal mit Auswerteprogrammen
    • Göttingen: wird auch kein Datenanalyse Tool beigebracht und wie eigene Daten aussehen sollten, im Master werden dann Daten von anderen verwendet
  • Wäre sinnvoll, eine Einführung in Metadaten zu bekommen
  • Wer macht Versuche mit ROOT?
    • Bonn und Mainz unter Umständen (aber ohne Einführung)
  • Planung von Experimenten im Grundpraktikum?
    • Mainz: will weg von vorgefertigten Versuchen
    • Darmstadt: Haben selbst die Möglichkeit, sich ein Versuch in Newtonscher Mechanik selbst zu planen
    • Alumni: Idee : "Messe die Erdbeschleunigung mit 3 verschiedenen Methoden"
    • Mainz: hat bei uns vollkommen gefehlt, wie mit Metadaten umgegangen wird
  • Göttingen: Einführung in Datenanalyse-Tools - sollten schon auch die Programme sein, die man später auch verwenden sollte (nicht einfach irgendeins)
  • Bonn: Share: Millikan Versuch läuft nicht immer gut, im Zweifel können Betreuer Daten von gut funktionierenden Durchführungen für die Auswertung austeilen, Sammelsorium an guten Datensätzen für bessere Auswertung
  • Göttingen: Evaluate: Man muss die Qualität der Datensätze insbesondere anderer Leute einschätzen lernen
  • Mainz: Austausch zwischen Gruppen fördern statt unterbinden, bisher zählt der Austausch/Vergleich der Daten im Praktikum als Betrugsversuch
  • Jena: Sollte man lernen, wie man vernünftig einen Datensatz aufbaut
  • Münster: Umgang mit Datensätzen anderer Leute ist schwerer zu bewerten, da häufig sauberes Durchführen des Versuches Teil der Bewertung ist

Konkrete Ziele

Data Literacy:

Welche Datenkompetenzen wollen wir im Studium vertreten haben?

  • (Strukturierte) Nutzung von Datenanalyse-Tools
    • Sinnvolle Einführung in entsprechende Programme
    • gleiche Tools in Lehre und Nutzung
  • Welche Metadaten sind relevant?
    • bibliographische Daten
    • Spezifikation des Experiments, Rahmenbedingungen (z.B. Temperatur, Luftdruck,...)
    • Wass muss/sollte enthalten sein?
  • Woran erkenne ich die Qualität eines Datensatzes

Praktikum

Was kann man im Praktikum zum Lernen von Datenkompetenzen umsetzen? (Unterteilung nach Data Management Lifecycle)

  • Plan: Ziel eines Experiments definieren, Durchführung Studis überlassen (offen lassen)
    • z.B. Messung von Konstanten
  • Collect: Metadaten mit aufnehmen, Nachstellen von Experimenten anhand nicht ausreichender Metadaten
  • Evaluate: "Erkenntnisse" aus Versuchen weiterverwenden
  • Share: Daten von anderen Gruppen wiederverwenden
  • Reuse: Einschätzen der Qualität von Datensätzen
  • Austausch zwischen Gruppen fördern statt verhindern

Zusammenfassung/Ausblick

Es wurde den folgenden zwei Fragen nachgegangen:

  • Welche Datenkompetenzen wollen wir im Studium vertreten haben?
  • Was kann man im Praktikum zum Lernen von Datenkompetenzen umsetzen?

Zur nächsten ZaPF werden diese Punkte in einem Positionspapier umgesetzt.




Bitte überlege vorher, ob der AK vielleicht in eine bereits existierende Kategorie einordbar ist (im Kategorienbaum unter Inhalte). Falls nicht kann die Sonstige Kategorie verwendet werden ([1]).